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Topics

♦  Transport effects in TFTR reversed-shear plasmas

♦  Turbulence suppression mechanisms

♦  Relationship to other enhanced confinement modes

♦  Anomalies and counter examples

♦  Possibilities for control



Reversed-Shear Plasmas Exhibited 
Bifurcations in Confinement

• Rates of neutral beam heating and particle fueling similar

• q profiles similar before transition

• Bifurcation of state: intermediate profiles did not occur

TFTR 

E. Synakowski
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• Flux balance effective χ, D:  q ≡  – n χ ∇ T and Γ ≡  – D ∇ n

• Neoclassical calculation includes off-diagonal contributions

• Orbit squeezing effects from Shaing et al. [Phys. Plasmas 1, 3365 (1994)]

• Particle transport barrier confirmed for T and He puffed into edge

Ion Thermal and Electron Particle Transport Sharply
Reduced in Plasma Interior after ERS Transition

M. Zarnstorff

TFTR
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Plasma Turbulence Reduced or Suppressed in
Vicinity of Internal Transport Barriers

♦  In ERS, bursting fluctuations measured by reflectometer
disappear within shear-reversal surface

•  fluctuations disappear rapidly at initial transition into ERS

•  reappear gradually at "back-transition" from ERS

♦  Turbulence suppression by sheared E×B flow  when

where

is shearing rate (Hahm and Burrell);

is linear growth rate of most unstable mode

♦  Radial force balance:

•  can calculate from measurements for carbon impurities
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Changing NBI Torque Can Destroy Then Recreate
Turbulence Suppression & Enhanced Confinement

E. Synakowski, E. Mazzucato, M. Beer

TFTR

Er  =  ∇ p/(eZn)  +  vφBθ  -  vθBφ
• Balanced NBI ⇒  Er dominated by ∇ p term

- positive feedback produces rapid transition

• Co-only NBI ⇒  Vφ term opposes ∇ p 

- Er shear drops ⇒  turbulent transport returns

• Eventually, Vφ dominates and Er increases

- turbulence and transport slowly decrease

- similar to enhanced NCS plasmas in DIII-D
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Suppression of Turbulence by Sheared Flow
Important in Other Confinement Regimes

♦  Majority of TFTR operation in "Supershot" regime with NBI

•  transitionless: develops smoothly from L-mode

•  shear is positive throughout and q(0) < 1

•  sawteeth suppressed

•  minimal degradation of confinement with power up to β-limit

♦  Model with turbulence suppressed by flow shear reproduces
many features and trends of supershot confinement

•  co-/ctr- NBI effects

•  dependence of central parameters on edge conditions

•  favorable isotope scaling in DT plasmas

•  model developed in parallel with ERS studies (D.R. Ernst)



Model with Turbulence Suppressed by Velocity Shear
Reproduces Ion Temperature Profiles in Supershots
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Based on supppression of ITG turbulent ion thermal diffusivity when
with self-consistent calculation of neoclassical plasma flow.

Leads to apparent scaling at fixed radius.

Enhanced confinement zone expands with heating power.

Supershot behavior resembles ERS, NCS, JT-60 ITB, etc.

D. R. Ernst



D.R. Ernst

Er Shear Can Account for T i Change with
Neutral Beam Torque in L-mode Plasmas

♦  Model power balance with
χi  =  χi

(IFS-PPPL) (1 – αEωE×B/γlin
(max))

using full neoclassical multi-species treatment of flows



ERS

RS

qmin

T
e 

  (
ke

V
)

Major Radius  (m)

2.5 2.7 2.9 3.1 3.3 3.5

1

2

3

4

5

6

7

0

χ e
 (

m
2 /

s)

Normalized minor radius r/a
0.0 0.2 0.4 0.6 0.8

0.1

1

10

qmin

RS

ERS

• Move plasma during steady-state phase ⇒  gradient from single detector

• Transition from flat core to large gradient at resolution of individual detector

• Transport analysis with 50 radial zones to increase resolution

• In region of high Te gradient, χe reduced by factor ~4 but remains  ~ 10 De

• In core, χe(ERS) >> χe(RS) and χe(ERS) >> De(ERS)

High Resolution Measurement Shows Structure in
Te and χe Profiles during ERS Phase

M. Zarnstorff

TFTR
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• Occurs in most but not all plasmas which transition to ERS

• Precedes signs of ERS in pressure profile by ~50ms

Transient Excursion in Poloidal Velocity 
Measured Prior to ERS Transition

TFTR

R. Bell
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• Chordal data inverted to produce local poloidal velocity
• Layer narrower than sightline separation ⇒  artifact inside
• Located between maximum pressure gradient and qmin

Narrow Flow Shear Layer Develops Inside  
qmin  Prior to ERS Transition

TFTR

R. Bell, E. Synakowski



Er (calc.) = ∇ p/(eZn) + vφBθ - vθBφ

2.42.22.01.81.6

Time (s)

-200

-100

0
E

r 
(k

V
/m

)

Er (calc.)

Er (MSE)

• All terms measured experimentally

• Motional Stark Effect (MSE) diagnostic modified to measure simultaneously 
emission from full and half energy injected neutrals ⇒  separation of Er, Bθ 

• Changes in ∇ p, vφ terms small compared to change in vθ term during transient

Radial Force Balance Confirmed by 
Measurement during E r Transient

TFTR

F. Levinton (FP&T), R. Bell, E. Synakowski
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• Chordal data inverted to produce local vθ 

• Shear develops injection in absorption region during Ion Bernstein Wave

• With available power, rotation insufficient to suppress turbulent transport

Ion Bernstein Wave Heating Can Drive Localized 
Poloidal Rotation and Create Velocity Shear 

TFTR

R. Bell, B. LeBlanc
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• "Type II" occurs in RS plasmas below threshold power for normal (Type I) ERS

• Reductions in χi, χφ; some reduction in De but not as marked as Type I

• Type II occurs as qmin → 2; the "foot" of the barrier is just outside qmin

- Similarity to barriers formed in JET OS plasmas

Second Type of Confinement Transition in RS 
TFTR

R. Bell
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• Vary co-/ctr- NBI balance at constant power to change rotation

• Transition time does vary as q profile is affected by beam-driven current

• E × B shear does not appear to be essential for triggering Type II transitions

Type II Transitions Occur for Range of E r Profiles
TFTR

R. Bell
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Summary and Issues

♦  The radial electric field plays a crucial role in tokamaks

•  possibilities for improved confinement - the critical issue

♦  Suppression of turbulence by sheared E × B flow may
underlie many regimes of improved core confinement

•  correlation between suppression of fluctuations and some
anomalous transport channels established in plasma interior

•  different loss channels have very different responses

•  anomalous transient flows can accompany ITB formation

♦  Caveat: other mechanisms appear to exist for ITB formation

♦  Development of tools to control transport barriers will be vital

•  sharp transport barriers create stability problems

•  flow control by RF waves a possibility


